
A Shareable Image Library in the BEPC Control System

C. Wang J. Zhao
Institute of High Energy Physics, Chinese Academy of Sciences

P.O. Box 918-10, Beijing 100039, China

Abstract

 The paper describes the method and procedure for
developing the shareable image library within the BEPC
control system.

1 Introduction

 There are many application processes and object module
libraries of the BEPC control system in the VAX/VMS
environment. Each process must be linked to these object
module libraries to create an executable image (see figure
1). When processing object modules, the linker has to
resolve symbolic references, sort program sections into
image sections and initialize the image section contents,
total link processing time will increase , each process
needs to have its own copy of these modules, so each
process takes up more space in physical memory and more
disk storage. If these object modules can be linked into one
shareable image(see figure 2), the above mentioned
problems can be avoided.

object
module
libraries

Linker

application
programs

application
object

modules

Figure 1. The executable images linked
 to the object module libraries.

2 A shareable image library

2.1 A shareable image

 A shareable image is the product of a link operation. It is
not directly executable, that is, it cannot be executed by
means of the DCL command RUN. To execute, a
shareable image must first be included as input in a link
operation that produces an executable image of an

application program. When that executable image is run,
the shareable image is also activated by the image
activator.

A shareable image file consists of an image header, one
or more image sections, and a symbol table, which appears
at the end of the file. The symbol table is, in fact, an object
module whose records contain definitions of universal
symbols in the shareable image. For a shareable image a
universal symbol is what a global symbol is for a module,
that is, it is a symbol that can be used to satisfy references
in external modules.

Shareable images can provide the following benefits:
• Reduce total linking processing time.
• Avoid relinking entire applications.
• Conserve disk space.
• Conserve physical memory.
• Reduce I/O paging.
• Implement memory-resident database.

2.2 Method of creating a shareable image

There are two means of creating a shareable image:
• Declaring Universal Symbols.
• A transfer vector.

Here, we only discuss the second way for simplicity.
A transfer vector labels a visual register cell by a label,

in which the next cell address of a visual register or a cell
displacement is contained. This second cell is a pointer to
the actual directive to receive control. That is to say, a
transfer vector defines an entry point for each subroutine.
The reasons for using a transfer vector are as follows:
• A shareable image may conveniently be modified and
 increased.
• The other processes linked against a shareable image
 need not be relinked.

A transfer vector must be written in MACRO. Specify
the .TRANSFER directive to declare the symbol which is
its argument, this symbol is a universal symbol by default.
The instructions are as follows:
(1) .transfer F00 ; Begin transfer vector to F00
(2) .mask F00 ; Store register save mask
(3) jump L^F00+2 ; Jump to routine
 Whatever language the procedure is written in, the
transfer vector has to be specified as above. To ensure
upward compatibility, follow these guidelines when
creating a transfer vector:
• Preserve the order and placement of entries in a
 transfer vector.
• Add new entries to the end of a transfer vector.

When including universal data in a transfer vector file,
use padding to leave adequate room for future growth
between the end of the transfer vector and the beginning of

the list of universal data declarations.
 A transfer vector is included in a link operation as any
other object module, the linker will automatically use the
transfer vector when specifying LINK/SHAREABLE to

shareable
image
library

Linker

application
object

module(.obj)

object
module
libraries

application
program

(.exe)

Linker

Figure 2. The executable images linked to
 the shareable image library.

create a shareable image. The linker will link the object
modules with the transfer vectors and the object modules
contained in the shareable image. However, to ensure
upward compatibility, you must make sure that the transfer
vector always appears in the same location of the image.
The best way to accomplish this is to make the transfer
vector always appear at the beginning of the image by
forcing the linker to process it first. So, using the
CLUSTER-option, put the transfer vector file in a named
cluster, so that the transfer vector will appear at the
beginning of the file. Besides, to enable images which are
linked against a shareable image to run with various
versions of the shareable image, you must specify the
identification number of the image by using the
GSMATCH-option to achieve it.

3 The shareable image library in the BEPC control
 system

 The shareable image library is different from the object
module library, in which the symbol table of the shareable
image is placed. There are about 20 object module
libraries in the BEPC control system, which refer to each
other. Because all application programs must be linked to
these libraries to create executable images, it takes a long
time to link these programs. If one module is modified, all

programs, which refer the module, must be relinked. To
avoid these shortcomings, we create a transfer vector
which defines an entry for each object module. Then, if
you include the object module with the transfer vector in a
named cluster, these object module libraries are still
included in a link operation as input. When creating
shareable images, we found that the attributes of some
program sections had to be reset. If you do not reset the
shareable attribute for program sections which are
writable, you must INSTALL the shareable images to run
the program. The shareable attribute [SHR] determines
whether multiple processes have shared access to the
memory. For example, if modules are data blocks, which
are declared as EXTERNAL in the subroutine, we use the
Linker ′PSECT-ATTR′ command to fix up various
PSECT′s to make them shareable or read-only, etc. We
create one shareable image library, which is called
LIBSHR. We put shareable modules into this library. All
programs only need to link to this library. When processing
the shareable image library, the linker will look for the
entire symbol table in the library. So, all programs only
reserve the address of their referred modules. Each
program takes up less space in physical memory and less
disk storage. When applications are executed, referenced
modules will be modules from the shareable library.
Because the version number of the shareable image is
never changed, all programs linked with the old version of
the shareable image don′t need to be relinked when
modifying or increasing modules of the library, but the
shareable image needs to be relinked. When running these
programs, the executable image with the old version of the
shareable image can map to the new version of the
shareable image.

Up to now, the shareable image library in the BEPC
control system has been setup. It proved to be safe and
reliable when running. Using the shareable image
conserves disk space and reduces linker processing time. It
provides convenience for maintenance and running.

Acknowledgment

 The authors wish to take this opportunity to thank Dr. J.
Smedinghoff, who gave us a lot of help. We would like to
thank Prof. Huiying Luo and Wei Liu for their help.

References

[1] 〈Open VMS Linker Utility Manual〉.
[2] J.Smedinghoff, Fermilab Accelerator, Division

Internal Report.

